NMDA, but not dopamine D(2), receptors in the rat nucleus accumbens areinvolved in guidance of instrumental behavior by stimuli predicting reward magnitude.

نویسندگان

  • W Hauber
  • I Bohn
  • C Giertler
چکیده

Expectancy of future reward is an important factor guiding the speed of instrumental behavior. The present study sought to explore whether signals transmitted via the NMDA subtype of glutamate receptors and via dopamine D(2) receptors in the nucleus accumbens (NAc) are critical for the determination of reaction times (RTs) of instrumental responses by the expectancy of future reward. A simple RT task for rats demanding conditioned lever release was used in which the upcoming reward magnitude (5 or 1 pellet) was signaled in advance by discriminative stimuli. In trained rats, RTs of conditioned responses with expectancy of a high reward magnitude were found to be significantly shorter. The shortening of RTs by stimuli predictive of high reward to be obtained was dose-dependently impaired by bilateral intra-NAc infusion of the competitive NMDA antagonist dl-2-amino-5-phosphonovaleric acid (APV) (1, 2, or 10 microg in 0.5 microl/side), but not by infusion of the preferential dopamine D(2) antagonist haloperidol (5 and 12.5 microg in 0.5 microl/side) or by infusion of vehicle (0.5 microl/side). In conclusion, the data reveal that in well trained animals stimulation of intra-NAc NMDA, but not of dopamine D(2), receptors, is critically involved in guiding the speed of instrumental responses according to stimuli predictive of the upcoming reward magnitude.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of NMDA and AMPA/KA receptors in the nucleus accumbens core in instrumental learning guided by reward-predictive cues.

The use of reward-predictive cues to guide behavior critically involves the nucleus accumbens. However, little is known regarding the role of ionotropic glutamate receptors in the core subregion of the nucleus accumbens (AcbC) in instrumental learning guided by reward-predictive cues. Here we examined the effects of an intra-AcbC blockade of NMDA and AMPA/KA receptors on the acquisition of an i...

متن کامل

NMDA receptors in the rat orbital prefrontal cortex are involved in guidance of instrumental behaviour under reversal conditions.

The orbital prefrontal cortex (OPFC) might be particularly involved in adapting instrumental responses to changes of stimulus-reward contingencies. We investigated whether signals in the OPFC transmitted via N-methyl-D-aspartate (NMDA) receptors are critical for learning a reversal of stimulus-reward contingencies. Rats were trained in a reaction time (RT) task demanding conditioned lever relea...

متن کامل

Reduction of the Morphine Maintenance by Blockade of the NMDA Receptors during Extinction Period in Conditioned Place Preference Paradigm of Rats

Introduction: Activation of N-methyl-d-aspartate (NMDA) glutamate receptors in the nucleus accumbens is a component of drug-induced reward mechanism. In addition, NMDA receptors play a major role in brain reward system and activation of these receptors can change firing pattern of dopamine neurons. Blockade of glutamatergic neurotransmission reduces the expression of conditi...

متن کامل

Dopamine D1 and NMDA receptors mediate potentiation of basolateral amygdala-evoked firing of nucleus accumbens neurons.

Interactions between the basolateral amygdala (BLA) and the nucleus accumbens (NAc) mediate reward-related processes that are modulated by mesoaccumbens dopamine (DA) transmission. The present in vivo electrophysiological study assessed: (1) changes in the firing probability of submaximal BLA-evoked single neuronal firing activity in the NAc after tetanic stimulation of the BLA, and (2) the fun...

متن کامل

Glutamate Receptors in Nucleus Accumbens Can Modulate Canabinoid-Induced Antinociception in Rat’s Basolateral Amygdala

Introduction: It has been shown that administration of WIN55,212-2, a cannabinoid receptor agonist, into the basolateral amygdala (BLA), dose-dependently increases the thermal latency to withdrawal in the tail-.ick test and decreases pain related behaviors in both phases of the formalin test. Recent human and animal imaging data suggest that the nucleus accumbens (NAc) is an important neural su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 20 16  شماره 

صفحات  -

تاریخ انتشار 2000